Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 12, 2025
-
Public opinion surveys constitute a widespread, powerful tool to study peoples’ attitudes and behaviors from comparative perspectives. However, even global surveys can have limited geographic and temporal coverage, which can hinder the production of comprehensive knowledge. To expand the scope of comparison, social scientists turn to ex-post harmonization of variables from datasets that cover similar topics but in different populations and/or at different times. These harmonized datasets can be analyzed as a single source and accessed through various data portals. However, the Survey Data Recycling (SDR) research project has identified three challenges faced by social scientists when using data portals: the lack of capability to explore data in-depth or query data based on customized needs, the difficulty in efficiently identifying related data for studies, and the incapability to evaluate theoretical models using sliced data. To address these issues, the SDR research project has developed the SDR Querier, which is applied to the harmonized SDR database. The SDR Querier includes a BERT-based model that allows for customized data queries through research questions or keywords (Query-by-Question), a visual design that helps users determine the availability of harmonized data for a given research question (Query-by-Condition), and the ability to reveal the underlying relational patterns among substantive and methodological variables in the database (Query-by-Relation), aiding in the rigorous evaluation or improvement of regression models. Case studies with multiple social scientists have demonstrated the usefulness and effectiveness of the SDR Querier in addressing daily challenges.more » « less
-
Abstract Task‐incremental learning (Task‐IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learning tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years, with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten during the incremental learning process still remains under‐explored. In this paper, we propose KnowledgeDrift, a visual analytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by tracking the task performance under the incremental learning process and then provides in‐depth inspections of drifted information via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time.more » « less
-
Despite the great success of Convolutional Neural Networks (CNNs) in Computer Vision and Natural Language Processing, the working mechanism behind CNNs is still under extensive discussion and research. Driven by strong demand for the theoretical explanation of neural networks, some researchers utilize information theory to provide insight into the black-box model. However, to the best of our knowledge, employing information theory to quantitatively analyze and qualitatively visualize neural networks has not been extensively studied in the visualization community. In this paper, we combine information entropies and visualization techniques to shed light on how CNN works. Specifically, we first introduce a data model to organize the data that can be extracted from CNN models. Then we propose two ways to calculate entropy under different circumstances. To provide a fundamental understanding of the basic building blocks of CNNs (e.g., convolutional layers, pooling layers, normalization layers) from an information-theoretic perspective, we develop a visual analysis system, CNNSlicer. CNNSlicer allows users to interactively explore the amount of information changes inside the model. With case studies on the widely used benchmark datasets (MNIST and CIFAR-10), we demonstrate the effectiveness of our system in opening the black-box of CNNs.more » « less
An official website of the United States government

Full Text Available